Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 1599, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383552

ABSTRACT

Lipids play crucial roles in many biological processes. Mapping spatial distributions and examining the metabolic dynamics of different lipid subtypes in cells and tissues are critical to better understanding their roles in aging and diseases. Commonly used imaging methods (such as mass spectrometry-based, fluorescence labeling, conventional optical imaging) can disrupt the native environment of cells/tissues, have limited spatial or spectral resolution, or cannot distinguish different lipid subtypes. Here we present a hyperspectral imaging platform that integrates a Penalized Reference Matching algorithm with Stimulated Raman Scattering (PRM-SRS) microscopy. Using this platform, we visualize and identify high density lipoprotein particles in human kidney, a high cholesterol to phosphatidylethanolamine ratio inside granule cells of mouse hippocampus, and subcellular distributions of sphingosine and cardiolipin in human brain. Our PRM-SRS displays unique advantages of enhanced chemical specificity, subcellular resolution, and fast data processing in distinguishing lipid subtypes in different organs and species.


Subject(s)
Microscopy , Nonlinear Optical Microscopy , Animals , Mice , Humans , Nonlinear Optical Microscopy/methods , Spectrum Analysis, Raman/methods , Lipids
2.
Nat Methods ; 20(3): 448-458, 2023 03.
Article in English | MEDLINE | ID: mdl-36797410

ABSTRACT

Stimulated Raman scattering (SRS) offers the ability to image metabolic dynamics with high signal-to-noise ratio. However, its spatial resolution is limited by the numerical aperture of the imaging objective and the scattering cross-section of molecules. To achieve super-resolved SRS imaging, we developed a deconvolution algorithm, adaptive moment estimation (Adam) optimization-based pointillism deconvolution (A-PoD) and demonstrated a spatial resolution of lower than 59 nm on the membrane of a single lipid droplet (LD). We applied A-PoD to spatially correlated multiphoton fluorescence imaging and deuterium oxide (D2O)-probed SRS (DO-SRS) imaging from diverse samples to compare nanoscopic distributions of proteins and lipids in cells and subcellular organelles. We successfully differentiated newly synthesized lipids in LDs using A-PoD-coupled DO-SRS. The A-PoD-enhanced DO-SRS imaging method was also applied to reveal metabolic changes in brain samples from Drosophila on different diets. This new approach allows us to quantitatively measure the nanoscopic colocalization of biomolecules and metabolic dynamics in organelles.


Subject(s)
Microscopy , Spectrum Analysis, Raman , Microscopy/methods , Spectrum Analysis, Raman/methods , Proteins/metabolism , Lipids
3.
Front Oncol ; 12: 858017, 2022.
Article in English | MEDLINE | ID: mdl-35359364

ABSTRACT

Triple negative breast cancer (TNBC) is a particularly aggressive cancer subtype that is difficult to diagnose due to its discriminating epidemiology and obscure metabolome. For the first time, 3D spatial and chemometric analyses uncover the unique lipid metabolome of TNBC under the tandem modulation of two key metabolites - insulin and methionine - using non-invasive optical techniques. By conjugating heavy water (D2O) probed Raman scattering with label-free two-photon fluorescence (TPF) microscopy, we observed altered de novo lipogenesis, 3D lipid droplet morphology, and lipid peroxidation under various methionine and insulin concentrations. Quantitative interrogation of both spatial and chemometric lipid metabolism under tandem metabolite modulation confirms significant interaction of insulin and methionine, which may prove to be critical therapeutic targets, and proposes a powerful optical imaging platform with subcellular resolution for metabolic and cancer research.

4.
Aging Cell ; 21(4): e13586, 2022 04.
Article in English | MEDLINE | ID: mdl-35257470

ABSTRACT

Lipid metabolism plays crucial roles during aging processes, but how it is regulated by diets and how it interplays with aging still remain unclear. We proposed a new optical imaging platform by integrating heavy water (D2 O) probing with stimulated Raman scattering (DO-SRS) microscopy, for the first time, to directly visualize and quantify lipid metabolism regulated by different diets and insulin signaling pathway in Drosophila fat body during aging. We found that calorie restriction, low protein diet, and (moderately) high protein and high sucrose diets enhanced lipid turnover in flies at all ages, while (moderately) high fructose and glucose diets only promoted lipid turnover in aged flies. The measured lipid turnover enhancements under diverse diets were due to different mechanisms. High protein diet shortened the lifespan while all other diets extended the lifespan. Downregulating the insulin signaling pathway enhanced lipid turnover, which is likely related to lifespan increase, while upregulating insulin signaling pathway decreased lipid turnover that would shorten the lifespan. Our study offers the first approach to directly visualize spatiotemporal alterations of lipid turnover in aging Drosophila in situ, for a better understanding of the interconnections between lipid metabolism, diets, and aging.


Subject(s)
Drosophila melanogaster , Drosophila , Aging/physiology , Animals , Diet , Diet, Protein-Restricted , Drosophila melanogaster/metabolism , Insulin/metabolism , Lipids , Longevity/physiology
5.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: mdl-35173045

ABSTRACT

We develop a high-throughput technique to relate positions of individual cells to their three-dimensional (3D) imaging features with single-cell resolution. The technique is particularly suitable for nonadherent cells where existing spatial biology methodologies relating cell properties to their positions in a solid tissue do not apply. Our design consists of two parts, as follows: recording 3D cell images at high throughput (500 to 1,000 cells/s) using a custom 3D imaging flow cytometer (3D-IFC) and dispensing cells in a first-in-first-out (FIFO) manner using a robotic cell placement platform (CPP). To prevent errors due to violations of the FIFO principle, we invented a method that uses marker beads and DNA sequencing software to detect errors. Experiments with human cancer cell lines demonstrate the feasibility of mapping 3D side scattering and fluorescent images, as well as two-dimensional (2D) transmission images of cells to their locations on the membrane filter for around 100,000 cells in less than 10 min. While the current work uses our specially designed 3D imaging flow cytometer to produce 3D cell images, our methodology can support other imaging modalities. The technology and method form a bridge between single-cell image analysis and single-cell molecular analysis.


Subject(s)
Flow Cytometry/methods , High-Throughput Screening Assays/methods , Image Processing, Computer-Assisted/methods , Flow Cytometry/instrumentation , Humans , Imaging, Three-Dimensional/instrumentation , Imaging, Three-Dimensional/methods , Software
6.
Analyst ; 146(24): 7510-7519, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34781326

ABSTRACT

Emerging studies have shown that lipid metabolism plays an important role in aging. High resolution in situ imaging of lipid metabolic dynamics inside cells and tissues affords a novel and potent approach for understanding many biological processes such as aging. Here we established a new optical imaging platform that combines D2O-probed stimulated Raman scattering (DO-SRS) imaging microscopy and a Drosophila model to directly visualize metabolic activities in situ during aging. The sub-cellular spatial distribution of de novo lipogenesis in the fat body was quantitatively imaged and examined. We discovered a dramatic decrease in lipid turnover in 35-day-old flies. Decreases in protein turnover occurred earlier than lipids (25-day vs. 35-day), and there are many proteins localized on the cell and lipid droplet membrane. This suggests that protein metabolism may act as a prerequisite for lipid metabolism during aging. This alteration of maintenance of protein turnover indicates disrupted lipid metabolism. We further found a significantly higher lipid turnover rate in large LDs, indicating more active metabolism in large LDs, suggesting that large and small LDs play different roles in metabolism to maintain cellular homeostasis. This is the first study that directly visualizes spatiotemporal alterations of lipid (and protein) metabolism in Drosophila during the aging process. Our study not only demonstrates a new imaging platform for studying lipid metabolism, but also unravels the important interconnections between lipid metabolism and aging.


Subject(s)
Drosophila , Lipid Metabolism , Animals , Lipid Droplets , Lipids , Microscopy
7.
Temperature (Austin) ; 8(3): 223-244, 2021.
Article in English | MEDLINE | ID: mdl-34527763

ABSTRACT

Enhanced intestinal permeability is a pervasive issue in modern medicine, with implications demonstrably associated with significant health consequences such as sepsis, multiorgan failure, and death. Key issues involve the trigger mechanisms that could compromise intestinal integrity and increase local permeability allowing the passage of larger, potentially dangerous molecules. Heat stress, whether exertional or environmental, may modulate intestinal permeability and begs interesting questions in the context of global climate change, increasing population vulnerabilities, and public health. Emerging evidence indicates that intestinal leakage of digestive enzymes and associated cell dysfunctions--a process referred to as autodigestion--may play a critical role in systemic physiological damage within the body. This increased permeability is exacerbated in the presence of elevated core temperatures. We employed Latent Dirichlet Allocation (LDA) topic modeling methods to analyze the relationship between heat stress and the nascent theory of autodigestion in a systematic, quantifiable, and unbiased manner. From a corpus of 11,233 scientific articles across four relevant scientific journals (Gut, Shock, Temperature, Gastroenterology), it was found that over 1,000 documents expressed a relationship between intestine, enhanced permeability, core temperature, and heat stress. The association has grown stronger in recent years, as heat stress and potential autodigestion are investigated in tandem, yet still by a limited number of specific research studies. Such findings justify the design of future studies to critically test novel interventions against digestive enzymes permeating the intestinal tract, especially the small intestine.

8.
Quant Imaging Med Surg ; 11(3): 1078-1101, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33654679

ABSTRACT

Stimulated Raman scattering (SRS) microscopy has emerged in the last decade as a powerful optical imaging technology with high chemical selectivity, speed, and subcellular resolution. Since the invention of SRS microscopy, it has been extensively employed in life science to study composition, structure, metabolism, development, and disease in biological systems. Applications of SRS in research and the clinic have generated new insights in many fields including neurobiology, tumor biology, developmental biology, metabolomics, pharmacokinetics, and more. Herein we review the advances and applications of SRS microscopy imaging in tissues and animals, as well as envision future applications and development of SRS imaging in life science and medicine.

9.
Front Mol Biosci ; 8: 779702, 2021.
Article in English | MEDLINE | ID: mdl-34977157

ABSTRACT

Oxidative imbalance plays an essential role in the progression of many diseases that include cancer and neurodegenerative diseases. Aromatic amino acids (AAA) such as phenylalanine and tryptophan have the capability of escalating oxidative stress because of their involvement in the production of Reactive Oxygen Species (ROS). Here, we use D2O (heavy water) probed stimulated Raman scattering microscopy (DO-SRS) and two Photon Excitation Fluorescence (2PEF) microscopy as a multimodal imaging approach to visualize metabolic changes in HeLa cells under excess AAA such as phenylalanine or trytophan in culture media. The cellular spatial distribution of de novo lipogenesis, new protein synthesis, NADH, Flavin, unsaturated lipids, and saturated lipids were all imaged and quantified in this experiment. Our studies reveal ∼10% increase in de novo lipogenesis and the ratio of NADH to flavin, and ∼50% increase of the ratio of unsaturated lipids to saturated lipid in cells treated with excess phenylalanine or trytophan. In contrast, these cells exhibited a decrease in the protein synthesis rate by ∼10% under these AAA treatments. The cellular metabolic activities of these biomolecules are indicators of elevated oxidative stress and mitochondrial dysfunction. Furthermore, 3D reconstruction images of lipid droplets were acquired and quantified to observe their spatial distribution around cells' nuceli under different AAA culture media. We observed a higher number of lipid droplets in excess AAA conditions. Our study showcases that DO-SRS imaging can be used to quantitatively study how excess AAA regulates metabolic activities of cells with subcellular resolution in situ.

10.
Wiley Interdiscip Rev Syst Biol Med ; 12(6): e1501, 2020 11.
Article in English | MEDLINE | ID: mdl-32686297

ABSTRACT

Direct imaging of metabolism in cells or multicellular organisms is important for understanding many biological processes. Raman scattering (RS) microscopy, particularly, coherent Raman scattering (CRS) such as coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS), has emerged as a powerful platform for cellular imaging due to its high chemical selectivity, sensitivity, and imaging speed. RS microscopy has been extensively used for the identification of subcellular structures, metabolic observation, and phenotypic characterization. Conjugating RS modalities with other techniques such as fluorescence or infrared (IR) spectroscopy, flow cytometry, and RNA-sequencing can further extend the applications of RS imaging in microbiology, system biology, neurology, tumor biology and more. Here we overview RS modalities and techniques for mammalian cell and tissue imaging, with a focus on the advances and applications of CARS and SRS microscopy, for a better understanding of the metabolism and dynamics of lipids, protein, glucose, and nucleic acids in mammalian cells and tissues. This article is categorized under: Laboratory Methods and Technologies > Imaging Biological Mechanisms > Metabolism Analytical and Computational Methods > Analytical Methods.


Subject(s)
Microscopy/methods , Neoplasms/pathology , Algorithms , Animals , Glucose/chemistry , Glucose/metabolism , Humans , Lipids/chemistry , Neoplasms/chemistry , Neoplasms/metabolism , Neural Networks, Computer , Proteins/chemistry , Proteins/metabolism , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...